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Abstract. A Bely̆ı map β : P1(C) → P1(C) is a rational function with at most three critical values; we

may assume these values are {0, 1, ∞}. Replacing P1 with an elliptic curve E : y2 = x3 + Ax + B, there

is a similar definition of a Bely̆ı map β : E(C) → P1(C). Since E(C) ' T2(R) is a torus, we call (E, β) a
Toroidal Bely̆ı pair. There are many examples of Bely̆ı maps β : E(C) → P1(C) associated to elliptic curves;

several can be found online at LMFDB. Given such a Toroidal Bely̆ı map of degree N , the inverse image

G = β−1
(
{0, 1, ∞}

)
is a set of N elements which contains the critical points of the Bely̆ı map. In this

project, we investigate when G is contained in E(C)tors. This is work done as part of the Pomona Research

in Mathematics Experience (NSA H98230-21-1-0015).

1. Introduction

Let S be a compact, connected Riemann Surface. For example, S = P1(C) ' S2(R) may be the Riemann
Sphere, or S = E(C) ' (R/Z)×(R/Z) may be a torus associated to an elliptic curve E. It is well-known that S
is a curve, that is, can be defined by a single equation f(x, y) = 0 for some polynomial f(x, y) =

∑
ij aij x

i yj

having complex coefficients aij . André Weil proved in 1956 that one can choose these coefficients to lie in
a number field if there exists a meromorphic function β : S → P1(C) with at most three critical values;
Gennadĭı Vladimirovich Bely̆ı proved the converse to this in 1979. For this reason, we call β a Bely̆ı map.
One can always choose the critical values of a Bely̆ı map β : S → P1(C) to lie in {0, 1, ∞} ⊆ P1(C). We
denote Γ = β−1

(
{0, 1, ∞}

)
⊆ S as the quasi-critical points of β.

There are many examples of Bely̆ı maps β : S → P1(C) associated to a Riemann surface S. Several can
be found online at the L-Series and Modular Forms Database (LMFDB). In this work, we are primarily
interested in Bely̆ı maps associated to elliptic curves: we call (E, β) a Toroidal Bely̆ı pair. We consider
how the quasi-critical points Γ ⊆ E(C) of a Toroidal Bely̆ı pair (E, β) interact with the Group Law ⊕ on
an elliptic curve. As a motivating example, consider the elliptic curve E : y2 = x3 + 1 and the Bely̆ı map
β(x, y) = (1 − y)/2. The set of quasi-critical points is Γ = {(0, 1), (0,−1), OE} ' Z3, a subgroup of
S = E(C).

We are motivated by two primary research questions. Given a Toroidal Bely̆ı pair (E, β), when does its
set of quasi-critical points Γ form a subgroup of (E(C),⊕)? If Γ is a group, then its elements must have
finite order. When are the quasi-critical points torsion elements in E(C) – regardless of Γ being a group?
Our main results are as follows.

Theorem. Say (X,φ) is a Toroidal Bely̆ı pair, and denote G = φ−1
(
{0, 1, ∞}

)
as the set of quasi-critical

points. Take β = φ ◦ ψ, where ψ : E → X is any non-constant isogeny, and denote Γ = β−1
(
{0, 1, ∞}

)
.

(1) (E, β) is a Toroidal Bely̆ı pair.
(2) Γ is contained in the torsion in E(C) whenever G is contained in the torsion in X(C).
(3) Γ is a group whenever G is group.

As a direct consequence, we find the following.

Corollary. There are infinitely many Bely̆ı pairs where the set of quasi-critical points forms a group.
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2. Background and Notation

We begin by introducing definitions and known results relevant for our main research questions.

2.1. Groups. A group is a pair (G,⊕) which consists of a non-empty set G and a binary operation ⊕ :
G × G → G such that G contains an identity element O, every element P ∈ G has an inverse element
[−1]P ∈ G, and ⊕ is associative. A group is said to be abelian if ⊕ is also commutative. As an example of
an abelian group, consider the pair (Zn,+) where Zn = {0, 1, . . . , n− 1} and + denotes addition modulo n.

The order of a group is the number of elements in G. A group is said to be finite if the set G is finite. The
order of P ∈ G is the smallest positive integer n such that [n]P = O, where [n]P denotes P ⊕ P ⊕ · · · ⊕ P
for exactly n summands P . If no such n exists, then an element is said to have infinite order. Otherwise, an
element has finite order and is called a torsion element.

A subset H ⊆ G is said to be a subgroup of G if H forms a group under ⊕. More generally, we may
consider the subgroup generated by the elements of H: this is the smallest subgroup of G containing H.

We may also define maps between groups. Given two groups (G,⊕) and (Γ, ?), a group homomorphism
is a map ψ : G→ Γ such that ψ(P ⊕Q) = ψ(P ) ? ψ(Q) for P,Q ∈ G. The kernel, denoted ker(ψ), is the set
P ∈ G such that ψ(P ) = OΓ where OΓ is the identity element in Γ; this is a subgroup of G. If ψ : G→ Γ is a
group homomorphism for which ker(ψ) = {OΓ} and ψ is surjective, ψ is said to be an isomorphism between
G and Γ. In this case, we denote G ' Γ.

The following proposition provides a group theoretic result relevant to this paper.

Proposition 1. Let G be finite group and let P ∈ G. Then the order of P divides the order of G.

2.2. Number Fields. Let ν ∈ C be a root of an irreducible polynomial f(T ) = cn T
n + · · ·+ c1 T + c0 with

coefficients ck ∈ Q. We denote K = Q(ν) as the collection of complex numbers in the form a0 + a1 ν + · · ·+
an−1 ν

n−1 where ak ∈ Q. The set K is called a number field.
Say that s ∈ C is the root of a irreducible polynomial g(T ) = dm T

m + · · · + d1 T + d0 with coefficients
dk ∈ K. We denote L = K(s) as the collection of complex numbers in the form b0 + b1 s+ · · ·+ bm−1 s

m−1

where bk ∈ K. The set L is called an extension of K; note that L is also a number field.
We define an embedding L into C fixing K to be that map where we evaluate s 7→ si for some root si ∈ C

of g(T ). We denote Emb(L/K) as the collection of embeddings L ↪→ C fixing K. (For those who know
about Galois groups, we can write Emb(L/K) = Gal

(
Q/L

)
/Gal

(
Q/K

)
as a collection of cosets.)

2.3. Riemann Sphere. We define the extended complex line, denoted by P1(C), as the set of complex
numbers together with infinity; recall that there is a one-to-one correspondence between the points on the
extended complex line and the points on the unit sphere S2(R). For this reason, we often call P1(C) ' S2(R)
the Riemann Sphere. It will be useful for us to view P1(C) as a non-singular curve of genus 0, that is, the
collection of complex points P = (x, y) satisfying f(x, y) = 0, where f(x, y) = y.

2.4. Elliptic Curves. We will now outline some of the general theory of elliptic curves relevant for this
paper. An elliptic curve, denoted by E, is a non-singular curve of genus one. In other words, it is a curve
generated by an equation f(x, y) = 0, where

f(x, y) = y2 + a1 x y + a3 y − (x3 + a2 x
2 + a4 x+ a6)

and where a1, a2, a3, a4, and a6 are complex numbers. We denote E(C) to be the collection of complex
points P = (x, y) on E augmented by a “point at infinity” OE . For more details, see [ST92, Chapter I.4,
page 28].

Proposition 2. Let E be an elliptic curve over C.

(1) There exists a binary operation ⊕ such that (E(C),⊕) is an abelian group with identity OE.
(2) Points P,Q,R on E(C) lie on a line if and only if P ⊕Q⊕R = OE.
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For details on the Chord-Tangent method, see [ST92, Chapter I.4]. For details on the collinearity property,
see [Sil09, Chapter III.2, Proposition 2.2, pages 51-52].

Similar to homomorphisms between two groups, an isogeny ψ : E(C)→ X(C) is a group homomorphism
between two elliptic curves, that is, ψ(P ⊕Q) = ψ(P )⊕ ψ(Q) for P,Q ∈ E(C).

Proposition 3. Let ψ : E(C) → X(C) be a non-constant isogeny. Then ψ is surjective, and ker(ψ) is a
finite subgroup of E(C).

For details, see [Sil09, Chapter IV, Corollary 4.9] and [Sil09, Chapter 2, Theorem 2.3].
Since we consider the points of an elliptic curve as forming a group, we define the order of a point P ∈ E(C)

in the same way as we previously defined the order of a group element P ∈ G. In the same way, we define a
torsion point as a point of finite order. The set of torsion elements for an elliptic curve E over the complex
numbers is denoted E(C)tors.

Proposition 4. Let E be an elliptic curve over C.

(1) E(C) ' (R/Z)× (R/Z). In particular, this set of complex points forms a torus.
(2) E(C)tors ' (Q/Z)× (Q/Z).
(3) Assume G ⊆ E(C)tors is a finite subgroup. Then G ' Zm × Zn for some positive integers m and n.

For details, see [Sil09, Chapter VI.5, Corollary 5.1.1, page 173].

2.5. Bely̆ı Maps. Denote either S = E(C) or S = P1(C). Note that in either case, S is a curve generated
by an equation f(x, y) = 0 for some polynomial f(x, y). (In the projects discussed in this exposition, we will
focus on the sphere and the torus, but many of the definitions hold for any compact, connected Riemann
surface S. It is well-known that such surfaces may be identified as a curve, that is, generated by an equation
f(x, y) = 0 for some polynomial f(x, y).)

A meromorphic function is a map β : S → P1(C) that is a ratio of two polynomials; denote the function
field K(S) as the collection of all such functions. For each point P = (x0, y0) in S, denote OP ⊆ K(S) as the
collection of meromorphic functions such that β(P ) 6=∞. For any positive integer e, denote

MP
e =

φ ∈ OP
∣∣∣∣∣∣ φ(x, y) = g(x, y) · f(x, y) +

∑
i+j=e

pij(x, y) · (x− x0)i(y − y0)j for g, pij ∈ OP

 .

For example, MP is just the collection of those meromorphic satisfying β(P ) = 0. Denote the order of β at
P as the integer

ordP (β) =

{
e ≥ 0 if β(P ) 6=∞ and β ∈MP

e but β /∈MP
e+1, and

e < 0 if β(P ) =∞ and 1/β ∈MP
−e but 1/β /∈MP

1−e.

The ramification index of β at P ∈ E(C) denoted eβ(P ) is defined as eβ(P ) = ordP [β(x, y)− β(P )]. (Order
and ramification can also be defined via places and valuations; for further details see [GG12, Chapter 3.4].)

Proposition 5. Let S be a compact, connected Riemann surface defined by a polynomial f(x, y). Given
meromorphic function β : S → P1(C), the ramification index eβ(P ) ≥ 2 at a point P ∈ S if and only if

∂f

∂x
(P )

∂β

∂y
(P )− ∂f

∂y
(P )

∂β

∂x
(P ) = 0.

To see why, note that, for any function g ∈ OP , we have a series expansion around P = (x0, y0) in the form[
β(x, y)− β(P )

]
+

[
g(P )

∂f

∂x
(P )− ∂β

∂x
(P )

]
(x− x0) +

[
g(P )

∂f

∂y
(P )− ∂β

∂y
(P )

]
(y − y0)

= g(x, y) · f(x, y) +
∑
i+j=2

pij(x, y) · (x− x0)i(y − y0)j ∈MP
2

for some pij ∈ OP . This means β(x, y)− β(P ) ∈MP
2 if and only if we can find q = g(P ) ∈ C such that

∂β

∂x
(P ) = q · ∂f

∂x
(P ) and

∂β

∂y
(P ) = q · ∂f

∂y
(P ) ⇐⇒ ∂β

∂x
(P )

∂f

∂y
(P )− ∂β

∂y
(P )

∂f

∂x
(P ) = 0.
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A point P ∈ S for which the conditions in Proposition 5 hold is called a critical point. A critical value
q ∈ P1(C) is a number q = β(P ) for some critical point P . A point Q ∈ S is a quasi-critical point if
β(Q) = β(P ) for some critical point P . The degree of a meromorphic function β : S → P1(C) is the size of
the inverse image β−1({q}) for any q ∈ P1(C) that is not a critical value.

A Bely̆ı pair (S, β) is a Riemann surface S along with a meromorphic function β : S → P1(C) with at
most three critical values. We can – and do – choose these values to be contained in {0, 1,∞} ⊆ P1(C).
There are two types of Bely̆ı pairs which we are specifically interested in for this exposition. A Bely̆ı map
γ : P1(C) → P1(C) is dynamical if γ

(
{0, 1,∞}

)
⊆ {0, 1,∞}. A Toroidal Bely̆ı pair (E, β) consists of an

elliptic curve E and a Bely̆ı map β : E(C)→ P1(C). A Toroidal Bely̆ı pair is defined to be imprimitive if it
can be written as a non-trivial composition β = γ ◦ φ ◦ ψ for some isogeny ψ : E(C)→ X(C), meromorphic
function φ ∈ K

(
X(C)

)
, and dynamical Bely̆ı map γ ∈ K

(
P1(C)

)
.

Proposition 6. Let S be a compact, connected Riemann surface of genus g(S). Let (S, β) be a Bely̆ı pair with
critical values contained in {0, 1, ∞} ⊆ P1(C) with ramification indices eP = eβ(P ) as well as preimages
B = β−1({0}), W = β−1({1}), and F = β−1({∞}). Then the quasi-critical points are contained in the
disjoint union B ∪W ∪ F , and we have the identity

deg(β) =
∑
P∈B

eP =
∑
P∈W

eP =
∑
P∈F

eP = |B|+ |W |+ |F |+
(
2 g(S)− 2

)
.

For details see [Sil09, Proposition 2.6, Chapter II.2, page 24].

2.6. Divisors. Continue to denote either S = P1(C) or S = E(C), although many of the definitions which
follow hold for any compact, connected Riemann surface S.

A divisor is a formal sum D =
∑
P∈S nP (P ), with nP ∈ Z and all but finitely many being zero. The degree

of a divisor is the integer degD =
∑
P∈S nP . Denote the collection of degree 0 divisors as Div0(S). Observe

that (Div0(S),+) is an abelian group under addition. Indeed, given two divisors D1 =
∑
P∈S cP (P ) and

D2 =
∑
P∈S dP (P ) as well as integers a and b, define aD1 + bD2 =

∑
P∈S nP (P ) in terms of the integers

nP = a cP + b dP . For details, see [Sil09, Chapter II.3, page 27].
Let β : S → P1(C) be a meromorphic function which is not identically zero. We can associate to β a

divisor of the form div(β) =
∑
P∈S nP (P ) where nP = ordP (β). A divisor D is principal if D = div(β)

for some meromorphic function β. The degree of a principal divisor is zero, and the collection of principal
divisors forms a subgroup of Div0(S).

Divisors on elliptic curves are intimately related to the group law.

Proposition 7. Let E be an elliptic curve over C. A divisor D =
∑
P∈S nP (P ) on S = E(C) is principal

if and only if
∑
P∈S nP = 0 in Z and

⊕
P∈S [nP ]P = OE in S.

For details, see [Sil09, Chapter III.3, Corollary 3.5, page 63]
Say φ : S → P1(C) is a meromorphic function which is not identically zero. There is a group ho-

momorphism φ∗ : Div0
(
P1(C)

)
→ Div0(S), called the pullback of φ, which is defined as follows: If

D =
∑
q∈P1(C) nq (q) is a divisor of degree 0 on P1(C), then φ∗D =

∑
P∈SmP (P ) is a divisor of degree

0 on S, where mP = eφ(P ) · nφ(P ).

Proposition 8. Denote either S = P1(C) or S = E(C).

(1) Assume that D = div(γ) is a principal divisor on P1(C). Then φ∗D = div(β) is a principal divisor
on S where β = γ ◦ φ.

(2) For any meromorphic function φ : S → P1(C) which is not identically zero, we have the pullback

φ∗
(
(0)− (∞)

)
=

∑
P∈φ−1({0})

nP (P ) −
∑

P∈φ−1({∞})

nP (P ) in terms of nP = ordP (φ).

For more details, see [Sil09, Chapter II.3, Proposition 3.6, page 29] and [Sil09, Chapter II.3, Example 3.5,
page 29]. The following proposition shows that divisors behave similarly to logarithms.

Proposition 9. Let β1, β2 : S → P1(C) be meromorphic functions which are not identically zero.

(1) div(βa1 · βb2) = a · div(β1) + b · div(β2) for any integers a and b.
(2) div(β1) = div(β2) if and only if β1 = k · β2 for some nonzero k ∈ C.
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For more details, see [Sil09, Chapter II.3, Proposition 3.1, page 28].

3. Initial Investigations

3.1. Motivating Examples and Questions. Given a Bely̆ı map on an elliptic curve, we can look at its
quasi-critical points. We can look at how the quasi-critical points interact with the elliptic curve group law.
To get a better idea of this, let us look at a couple of examples.

Consider the Toroidal Bely̆ı pair (E, β) with E the curve defined by f(x, y) = y2− (x3 + 1) and β(x, y) =
(1−y)/2. We can compute the critical points P = (x, y) of β by finding when the following function vanishes:
(∂f/∂x) (∂β/∂y) − (∂f/∂y) (∂β/∂x) = (3/2)x2. We find that the critical points are {(0, 1), (0,−1), OE},
which is isomorphic to Z3.

As a second example, consider the Toroidal Bely̆ı pair (E, β) with E the curve defined by f(x, y) =
y2 − (x3 − x) and β(x, y) = x2. Again, we can compute the critical points P = (x, y) of β by finding when
the following function vanishes: (∂f/∂x) (∂β/∂y) − (∂f/∂y) (∂β/∂x) = −4x y. We find that the critical
points are {(−1, 0), (0, 0), (+1, 0), OE}, which is isomorphic to Z2 × Z2.

Following our observations from these examples, there are two main questions that arise.

Research Question. Say (E, β) is a Toroidal Bely̆ı pair, and denote Γ = β−1
(
{0, 1, ∞}

)
as the collection

of quasi-critical points. When does Γ form a subgroup of
(
E(C),⊕

)
? By Proposition 1, the elements in Γ

must be points with finite order whenever Γ is a group. When are the points in Γ torsion elements in E(C),
regardless of Γ being a group?

3.2. Searching for Examples. We began our exploratory analysis by calculating a number of examples. We
started by pulling examples of Toroidal Bely̆ı pairs (X,φ) from the L-Series and Modular Forms Database
(LMFDB) [LMFDB], computing quasi-critical points P ∈ φ−1

(
{0, 1, ∞}

)
and their ramification indices

eP = eφ(P ); some data can be found in Table 2. We soon realized that we would need to write a computer
program to systematically compute the quasi-critical points and their orders. Simply put, even though the
Toroidal Bely̆ı pair (X,φ) was defined over a number field K = Q(ν), the quasi-critical points in general
would be defined over an extension L = K(s). Figure 1 contains a diagram of the various function fields
where we need to carry out our computations.

The outline of our methodology is as follows:

Algorithm Compute Examples

1: Choose Toroidal Bely̆ı pair (X,φ) defined over a number field K = Q(ν) from LMFDB.
2: Viewing φ ∈ K

(
X(C)

)
, compute div(φ), div(φ−1), and div(1/φ) to find the quasi-critical points over C.

3: Compute the smallest number field L = K(s) containing all the quasi-critical points.
4: Extend the function field K(X) = K

(
X(K)

)
of the elliptic curve to L, that is, L(X) = K

(
X(L)

)
.

5: Working over L, compute the divisors, quasi-critical points, and their orders.
6: Identify the smallest subgroup that contains all of the quasi-critical points.
7: Write divisors, quasi-critical points, and the group generated by them to an external file.

The above was all implemented using a combination of python and sage on the cloud computing provider
CoCalc. Computational power limited our ability to calculating the number field L in many cases. As a
result, we implemented a “time-out,” a specified time interval for computing the number field after which
the example would be skipped. Still, we were able to compute 13 examples of Toroidal Bely̆ı pairs (X,φ) for
which the quasi-critical points are all torsion, that is, φ−1

(
{0, 1, ∞}

)
⊆ X(C)tors. A summary of the results

can be found in Table 1, and the complete list of examples can be found in Table 3. The full code can be
found in our GitHub repository [Asm+21].

4. Main Results

In this section, we list the main results from our research.
We observed that, given a Toroidal Bely̆ı pair (E, β), we could construct another Toroidal Bely̆ı pair

(X,φ) where X = E is the same elliptic curve but φ(x, y) = β
(
(x, y)⊕ P0

)
could be the translate by point

P0 ∈ E(C). If there is any hope of the collection of quasi-critical points being torsion, then we would need
5



C(X) = K
(
X(C)

)

L(X) = K
(
X(L)

)
C(x) = K

(
P1(C)

)

K(X) = K
(
X(K)

)
L(x) = K

(
P1(L)

)
C

K(x) = K
(
P1(K)

)
L = K(s)

K = Q(ν)

Q

Figure 1. Function Fields related to a Toroidal Bely̆ı Pair (X,φ) defined over K

deg(φ)
Total from
LMDFB

Total Number of
Successfully Processed

Number with Quasi-Critical
Points All Torsion

3 1 1 (100%) 1 (100%)
4 2 2 (100%) 2 (100%)
5 7 7 (100%) 1 (14%)
6 35 29 (83%) 7 (24%)
7 73 15 (21%) 0 (0%)
8 94 30 (32%) 2 (7%)
9 39 23 (59%) 0 (0%)

Totals 251 107 (43%) 13 (12%)

Table 1. Processing of Toroidal Bely̆ı pairs (X,φ) from LMFDB. We wish to find a number
field L such that φ−1

(
{0, 1, ∞}

)
⊆ X(L) – which we may not be able to do in sage.

to limit the possibilities of quasi-critical points by choosing certain translates of Bely̆ı maps. The following
proposition explains one way we can do this.

Theorem 10. Say (E, β) is a Toroidal Bely̆ı pair, with N = deg(β), and denote

Q0 =
⊕

P∈β−1({0})

[eP ]P =
⊕

P∈β−1({1})

[eP ]P =
⊕

P∈β−1({∞})

[eP ]P.
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Then β can be normalized, that is, there exists P0 ∈ E(C) satisfying [N ]P0 = Q0 such that β
(
(x, y)⊕ P0

)
=

f(x, y)/g(x, y) for two polynomials f, g ∈ K
(
E(C)

)
with divisors

div(f) =
∑
P∈B

eP (P )−N (OE)

div(f − g) =
∑
P∈W

eP (P )−N (OE)

div(g) =
∑
P∈F

eP (P )−N (OE)

where

B = β−1({0})	 P0,

W = β−1({1})	 P0,

F = β−1({∞})	 P0.

Observe that if β : E(C)→ P1(C) is a normalized Toroidal Bely̆ı map, then we may choose P0 = Q0 = OE .
Hence the quasi-critical points, i.e. the points in B, W , and F , have relations involving their ramification
indices. For instance, if we have a normalized Bely̆ı map with β−1({q}) = {P} for some q ∈ P1(C), then
q ∈ {0, 1, ∞} must be a critical value, and so [N ]P = OE since eβ(P ) = N is the degree of the Bely̆ı map.

Proof. Denote φ(x, y) = β
(
(x, y) ⊕ P0

)
. Then, observe that φ−1({q}) = β−1({q}) 	 P0, for any q ∈ P1(C).

Recall that eP = eβ(P ) = eφ(P 	 P0). Then, by Proposition 8, we have the principal divisors

div(φ) =
∑
P∈B

eP (P )−
∑
P∈F

eP (P )

div(φ− 1) =
∑
P∈W

eP (P )−
∑
P∈F

eP (P )

where

B = β−1({0})	 P0 = φ−1({0}),

W = β−1({1})	 P0 = φ−1({1}),

F = β−1({∞})	 P0 = φ−1({∞}).

Then, it follows from Proposition 7 that(⊕
P∈B

[eP ]P

)
	

(⊕
P∈F

[eP ]P

)
=

(⊕
P∈W

[eP ]P

)
	

(⊕
P∈F

[eP ]P

)
= OE .

The statement for Q0 follows. To show that P0 exists as claimed, consider the map ψ : E(C)→ E(C) defined
by ψ(P ) = [N ]P . Proposition 3 asserts that ψ is surjective, hence the statement for P0 follows. We will show
that f, g exist as claimed by showing that D1 =

∑
P∈B eP (P )−N (OE) and D2 =

∑
P∈F eP (P )−N (OE)

are principal divisors. First, consider D1. Then, deg(D1) =
∑
P∈B eP −N = N −N = 0 by Proposition 6;

and, by the definition of Q0 = [N ]P0,(⊕
P∈B

[eP ]P

)
⊕ [−N ]OE =

⊕
P∈β−1({0})

[eP ](P 	 P0) = [N ]P0 	 [N ]P0 = OE .

It follows from Proposition 7 that there exists f ∈ K
(
E(C)

)
such that div(f) = D1. By a similar argument,

there exists g ∈ K
(
E(C)

)
such that div(g) = D2. Now observe that

div(f/g) = div(f)− div(g) =

(∑
P∈B

eP (P )−N (OE)

)
−

(∑
P∈F

eP (P )−N (OE)

)
= div(φ).

Therefore, Proposition 9 asserts that φ = k · f/g, for some constant k. Substituting k · f as f , if necessary,
we see that φ = f/g. Consider div(f − g). Using that φ = f/g, substitute in f = φ · g to see that

div(f − g) = div
(
g · (φ− 1)

)
= div(g) + div(φ− 1)

=

(∑
P∈F

eP (P )−N (OE)

)
+

(∑
P∈W

eP (P )−
∑
P∈F

eP (P )

)
=
∑
P∈W

eP (P )−N (OE).

�

Recall from Table 3 that we have 13 examples of Toroidal Bely̆ı pairs (E, β) where the collection of quasi-
critical points are torsion. The phenomenon that we have seen so far where the quasi-critical points forms
a group occurs infinitely often.
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Theorem 11. Say (X,φ) a Toroidal Bely̆ı pair, and denote G = φ−1
(
{0, 1, ∞}

)
as the set of quasi-critical

points. Take β = φ ◦ ψ, where ψ : E → X is any non-constant isogeny, and denote Γ = β−1
(
{0, 1, ∞}

)
.

(1) (E, β) is a Toroidal Bely̆ı pair.
(2) Γ is contained in the torsion in E(C) whenever G is contained in the torsion in X(C).
(3) Γ is a group whenever G is group.

In order to prove this theorem, we will proceed with the proofs of numerous lemmata. Observe that Γ =
{P ∈ E(C) | ψ(P ) ∈ G} = ψ−1(G); this will be useful in the proofs.

Lemma 12. (E, β) is a Toroidal Bely̆ı pair.

Proof. Assume by way of contradiction that β = φ ◦ ψ is not a Bely̆ı map. By assumption, there exists a
point P ∈ E(C) such that β(P ) = q 6∈ {0, 1,∞} is a critical value. Since q is a critical value, eβ(P ) ≥ 2.
However eβ(P ) = eφ(ψ(P )), it follows that eφ(Q) ≥ 2 for some Q = ψ(P ) ∈ X(C). Then Q is a critical
point for φ with value q = β(P ) = φ(Q). Then, φ has a critical value q 6∈ {0, 1,∞}, which is a contradiction.
Therefore, β is a Bely̆ı map. �

Lemma 13. If G ⊆ X(C)tors then Γ ⊆ E(C)tors.

Proof. Take Q = ψ(P ) ∈ G with P ∈ Γ. Since G ⊆ X(C)tors, then there exists a positive integer n such
that [n]Q = OX . Since ψ is a group homomorphism, then [n]Q = [n]ψ(P ) = ψ([n]P ). It follows that
ψ([n]P ) = OX . Thus, [n]P ∈ ker(ψ), which is shown to be finite in Proposition 3. By Proposition 1,
there exists a positive integer m such that [m]R = OE for any R ∈ ker(ψ). Denoting N = mn, we have
[N ]P = [m]

(
[n]P

)
= OE , showing P ∈ E(C)tors. Thus, Γ ⊆ E(C)tors. �

Lemma 14. Suppose (G,⊕) is a group. Then Γ is a subgroup of (E(C),⊕).

Proof. To show that Γ is a subgroup of (E(C),⊕), we show that (i) Γ is a non-empty set and (ii) that
Γ is closed under differences. For (i), ψ(OE) = OX ∈ G because (G,⊕) is a group and ψ is a group
homomorphism, so OE ∈ ψ−1(G) = Γ. For (ii), consider ψ(P ), ψ(Q) ∈ G where P,Q ∈ Γ. Since (G,⊕) is
a group, we have ψ(P 	 Q) = ψ(P ) 	 ψ(Q) ∈ G, which means that P 	 Q ∈ Γ. Thus, Γ is a subgroup of
(E(C),⊕). �

Corollary 15. There are infinitely many imprimitive Toroidal Bely̆ı pairs where the set of quasi-critical
points forms a group.

Proof. Consider X : y2 = x3 + 1 and the Bely̆ı map φ(x, y) = (1− y)/2. We have seen that the quasi-critical
points, namely G = φ−1

(
{0, 1, ∞}

)
=
{

(0,−1), (0, 1), OE
}
' Z3, forms a group. Theorem 11 asserts that

(E, β) forms a Toroidal Bely̆ı pair for any non-constant isogeny ψ : E(C)→ X(C) where Γ = β−1
(
{0, 1, ∞}

)
forms a group. Since there are infinitely many such isogenies, the result follows. �

It appears that Corollary 15 can generate infinitely many examples of Toroidal Bely̆ı pairs (E, β) where the
quasi-critical points forms a group, but we can only show this for imprimitive such pairs. Table 4 shows how
many of the examples from Table 3 are actually associated to imprimitive Toroidal Bely̆ı pairs.

5. Future Work

Upon completion of this project, we have three main goals for future related work. Firstly, we would like
to modify the Sage code so that we can process more examples. Next, we would like to know if there are
more examples with quasi-critical points and which cannot be explained by our main theorem. We have
13 examples where the quasi-critical points are torsion, and we have one example that can be explained by
our main theorem. Finally, we would like to create a web page where we can host the data found over the
summer so that others may easily access and view our results.
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